首页> 外文OA文献 >TurboBŁYSK : Scheduling for improved data-driven task performance with fast dependency resolution
【2h】

TurboBŁYSK : Scheduling for improved data-driven task performance with fast dependency resolution

机译:TurboBŁYSK:通过快速的依赖关系解决方案来计划改进的数据驱动任务性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data-driven task-parallelism is attracting growing interest and has now been added to OpenMP (4.0). This paradigm simplifies the writing of parallel applications, extracting parallelism, and facilitates the use of distributed memory architectures. While the programming model itself is becoming mature, a problem with current run-time scheduler implementations is that they require a very large task granularity in order to scale. This limitation goes at odds with the idea of task-parallel programing where programmers should be able to concentrate on exposing parallelism with little regard to the task granularity. To mitigate this limitation, we have designed and implemented TurboBŁYSK, a highly efficient run-time scheduler of tasks with explicit data-dependence annotations. We propose a novel mechanism based on pattern-saving that allows the scheduler to re-use previously resolved dependency patterns, based on programmer annotations, enabling programs to use even the smallest of tasks and scale well. We experimentally show that our techniques in TurboBŁYSK enable achieving nearly twice the peak performance compared with other run-time schedulers. Our techniques are not OpenMP specific and can be implemented in other task-parallel frameworks.
机译:数据驱动的任务并行性吸引了越来越多的兴趣,并且现已添加到OpenMP(4.0)中。这种范例简化了并行应用程序的编写,提取了并行性,并促进了分布式内存体系结构的使用。当编程模型本身变得成熟时,当前运行时调度程序实现的问题在于,它们需要非常大的任务粒度才能扩展。此限制与任务并行编程的想法不符,在任务并行编程中,程序员应该能够专注于公开并行性,而几乎不考虑任务粒度。为了减轻这种限制,我们设计并实现了TurboBŁYSK,这是一种高效的运行时任务调度程序,具有明确的数据相关性批注。我们提出了一种基于模式节省的新颖机制,该机制允许调度程序基于程序员注释重用以前解析的依赖项模式,使程序甚至可以使用最小的任务并很好地扩展。我们通过实验证明,与其他运行时调度程序相比,我们在TurboBŁYSK中的技术可实现近两倍的峰值性能。我们的技术不是特定于OpenMP的,可以在其他任务并行框架中实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号